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Abstract 

Background:  Although the development of sequencing technologies has provided 
a large number of protein sequences, the analysis of functions that each one plays is 
still difficult due to the efforts of laboratorial methods, making necessary the usage 
of computational methods to decrease this gap. As the main source of information 
available about proteins is their sequences, approaches that can use this information, 
such as classification based on the patterns of the amino acids and the inference based 
on sequence similarity using alignment tools, are able to predict a large collection 
of proteins. The methods available in the literature that use this type of feature can 
achieve good results, however, they present restrictions of protein length as input to 
their models. In this work, we present a new method, called TEMPROT, based on the 
fine-tuning and extraction of embeddings from an available architecture pre-trained 
on protein sequences. We also describe TEMPROT+, an ensemble between TEMPROT 
and BLASTp, a local alignment tool that analyzes sequence similarity, which improves 
the results of our former approach.

Results:  The evaluation of our proposed classifiers with the literature approaches has 
been conducted on our dataset, which was derived from CAFA3 challenge database. 
Both TEMPROT and TEMPROT+ achieved competitive results on Fmax , Smin , AuPRC and 
IAuPRC metrics on Biological Process (BP), Cellular Component (CC) and Molecular 
Function (MF) ontologies compared to state-of-the-art models, with the main results 
equal to 0.581, 0.692 and 0.662 of Fmax on BP, CC and MF, respectively.

Conclusions:  The comparison with the literature showed that our model presented 
competitive results compared the state-of-the-art approaches considering the amino 
acid sequence pattern recognition and homology analysis. Our model also presented 
improvements related to the input size that the model can use to train compared to 
the literature methods.

Keywords:  Protein function prediction, Natural language processing, Transformers

Background
With the development of sequencing technologies in the last decades, a large number 
of proteins have been sequenced. On the other hand, the analysis of the specific char-
acteristics of each one is still far from the number of sequenced proteins, mainly due 
to the effort of time and money required by laboratorial experiments compared to 
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sequencing techniques. Due to this fact, works in the literature have been proposing 
computational methods to predict this type of information from sequenced proteins, 
such as secondary structures [1] and functions [2], in order to decrease this gap [3].

The protein function annotation task uses Gene Ontology (GO) [4] to evaluate the 
predictions made in three different ontologies, Biological Process (BP), which repre-
sents the process that proteins are involved, Cellular Component (CC), which is the 
place in the cell where the protein performs the function, and Molecular Function 
(MF), the function played by the protein at a molecular level. In all of them, each pro-
tein can have a different assigned function, which makes this task a multi-label pre-
diction. Furthermore, the organization of the ontologies is in a direct acyclic graph, 
with the deeper terms being more specific than the shallow ones and, if a protein has 
a specific term, it also has all the ancestor ontology terms up to the root node.

In the literature, different approaches considering a huge type of features have been 
presented for the protein function annotation task, such as amino acid sequence pat-
tern recognition [2, 5–7], sequence similarity analysis using homology search [8, 9] 
based on BLASTp [10] or DIAMOND [11], which are local alignment tools, structure 
[12, 13], protein-protein network interaction [13, 14], biological features [15, 16], text 
mining from scientific articles [17], and combination of them [18, 19]. Compared to 
the other features, protein sequence is the most common information available about 
proteins, so methods that use it, such as amino acid sequence pattern analysis and 
homology search, can predict a large collection of proteins compared to models that 
apply other input characteristics to their models.

In this paper, we present two protein function annotation models, based on pro-
tein pattern analysis and homology search. The first one is TEMPROT, a method that 
uses the amino acid sequence to make GO predictions based on the fine-tuning and 
extraction of embeddings from ProtBERT-BFD [20], a Transformer [21] architecture 
pre-trained in protein sequences. As an evolution of TEMPROT, we developed TEM-
PROT+, an ensemble of the former approach with BLASTp, responsible for making 
homology search based on local sequence similarity.

During the evaluation on our dataset, which is based on CAFA3 challenge, we com-
pared TEMPROT and TEMPROT+ against state-of-the-art approaches using amino 
acid sequence pattern recognition and homology search. We applied DeepGO [5], 
DeepGOPlus [6], TALE+ [2], ATGO+ [7], and the baseline models proposed in the 
CAFA challenge on our data. Our methods achieved the best Fmax on CC and MF 
ontologies, and competitive results on AuPRC, IAuPRC, and Smin metrics on the test 
set, able to predict rare terms in all three ontologies and competitive results consider-
ing the Eukaryota, Bacteria, and Archaea domains.

Our main contributions are: (1) we report issues on the main dataset available in the 
literature for protein function annotation and we create a new version of this data-
set, without these issues, (2) we propose a new metric that showed to be fairer in the 
evaluation of precision and recall curves, (3) we present a new method to generate 
artificial proteins for training data enhancement based on PAM matrix [22], improv-
ing the results compared to the standard version, that is, without this technique and 
(4) unlike state-of-the-art methods, our method can use sequences without length 
restriction.
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Methods
In this section, we present the dataset applied in our experiments, describe our model 
and the comparison methods, and detail the evaluation metrics.

Dataset

The dataset employed to evaluate our model and compare with the literature was gen-
erated by DeepGOPlus [6] work based on CAFA3 [23], which is the most recent data-
set from CAFA challenge that has a published paper reporting the official methods and 
results. The split of the database considered the timestamp, that is, the training and 
validation sets have proteins with experimental annotations published before Septem-
ber 2016, and the test set contains proteins with experimental annotations published 
between September 2016 and November 2017.

During the exploration of the dataset, we noticed that some sequences are identical on 
different sets considering the same ontology, even with different functions annotated. 
Therefore, to deal with this issue related to data leakage about protein sequence, we 
removed the duplicated data in the following steps: (1) exclusion of duplicated sequences 
from the training set, considering the test set, (2) removal of duplicated sequences from 
the validation set, considering the test set, (3) exclusion of duplicated sequences from 
the validation set, considering the training set. Considering the duplicated sequences in 
the training and test set, we removed 430 (0.89%), 164 (0.36%), and 47 (0.14%) sequences 
out of the 48,121, 45,473 and 32468 sequences from the original training set of BP, CC 
and MF, respectively, with 60.9% (BP), 87.8% (CC) and 74.5% (MF) of these removed 
sequences having different labels in these two sets.

As a final preprocessing step of the dataset, we considered only terms presented in at 
least 50 proteins as possible labels in the annotation task, as used in the DeepGOPlus 
work. The number of proteins in each set and the number of functions in each ontology 
are presented in Table 1.

TEMPROT

In this subsection, we describe our protein sequence-based method for annotating pro-
tein functions, which we called Transformer-based EMbeddings for PROTein function 
annotation (TEMPROT). Figure 1 illustrates TEMPROT pipeline.

Fine‑tuning

Following state-of-the-art natural language processing techniques, we fine-tuned Prot-
BERT-BFD [20], a BERT-based [24] model pre-trained on BFD dataset [25], and used it 
as extractor of features from the protein sequence for function annotation.

Table 1  Number of proteins and functions in BP, CC and MF ontologies in the dataset

BP CC MF

Training set 47,691 45,309 32,421

Validation set 5252 4985 3587

Test set 2392 1265 1137

Functions 3992 551 677



Page 4 of 16Oliveira et al. BMC Bioinformatics          (2023) 24:242 

As ProtBERT-BFD is a BERT-based architecture, it cannot cope with sequences 
longer than 512 amino acid tokens during fine-tuning for sequence classification task, 
due to the quadratic memory limitations of the attention mechanisms, requiring large 
computational resources for longer inputs. Based on this fact, we split the protein 
sequences using a sliding window technique of size of 500 amino acids without super-
position. To improve the generalization of the model, we proposed additional slices in 
the case of two consecutive slices have at least 250 amino acids. In this case, we cre-
ated an additional slice with the 250 last amino acids of the first slice and the 250 first 
amino acids of the last slice. During this process, we assigned the same labels from 
the original protein sequence to all the slices generated. Figure 2 shows an example of 
this approach with a protein with 1200 amino acids, with the red squares representing 

Fig. 1  The pipeline of the Transformer-based EMbeddings for PROTein function annotation (TEMPROT). 
a Each sequence is split into slices using the sliding window technique and fined-tune ProtBERT-BFD 
backbone. b With the fine-tuned ProtBERT-BFD, all the slices pass through the backbone to extract the 
embeddings from the last representation of CLS token, then combine the embeddings to have a unique 
representation of the protein and make the final prediction with the meta-classifier

Fig. 2  Example of sliding window technique using a protein with 1200 amino acids. The red squares 
represent the standard slices, and the blue square illustrates the additional slice
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the standard slices and the blue square as the additional slice. In the example, the first 
and the second standard slices have the size equal to 500, and the last has the size 
equal of 200, and based on this, it is possible to create just one additional slice.

In TEMPROT, the first step is the fine-tuning process of ProtBERT-BFD in the protein 
function annotation task, as described in part (a) of Fig.  1. To do so, we passed each 
input data, that is, the slices that were generated using the sliding window technique, 
through the backbone. It is important to notice that it is possible to make predictions 
using the backbone (part (a) of Fig. 1). We compare and discuss the results based on the 
predictions made in this first step with the final model in the Results section.

During the fine-tuning step, we used ProtBERT-BFD model available at  Hugging 
Face [26] repository, with TensorFlow [27] and ktrain [28] libraries. We fine-tuned 
the model during 10 epochs with the early stopping technique, binary cross-entropy loss 
function, and Adam [29] optimizer.

Embedding extraction

After the fine-tuning process, we used the backbone architecture as feature extraction. 
To do so, we passed all sequence slices through the fine-tuned ProtBERT-BFD backbone 
and extracted the embeddings from CLS token from the last encoder block of the fine-
tuned architecture. This token is responsible for gathering the context of the sentence, 
that is, it is used as a special token for classification tasks. Based on that, we extracted 
the embeddings from the deepest representation of this token. As a result, each slice 
generated a feature vector of 1024 float values.

Then, we aggregated the embeddings from the slice of the same protein to have a 
unique feature vector of size 1024 for each protein. To do so, we applied the mean opera-
tion between the embeddings of all the slices of the same protein.

Meta‑classifier

As the last step of our method, we employed each protein representation in a meta-clas-
sifier, which is responsible for making the final prediction.

For the meta-classifier, we constructed a multi-layer perceptron neural network model 
with TensorFlow library. The architecture consisted of one hidden layer with 1000 
neurons and ReLU activation. We trained the model during 100 epochs with early stop-
ping and reduction of learning rate on plateau techniques, binary cross-entropy loss 
function, and Adam optimizer.

Data augmentation

During all the steps of TEMPROT, we employed data augmentation for the training set. 
Inspired by EDA technique [30], for each protein in the training set, we created a copy of 
it and made substitutions of amino acids considering the PAM1 matrix [22] in an offline 
manner.

In the PAM matrix M, each row i and column j represents the amino acids, where a 
specific position Mij indicates the likelihood of substitution of amino acid j per amino 
acid i. It is important to note that, in the PAM matrix, the most likely substitution of a 
specific amino acid is for the same amino acid, that is, the substitution does not change 
the amino acid.
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For the substitutions, we considered Eq. 1, where the number of substitutions of a 
protein p is equal to its length L and a constant k. We explored different values for k, 
and the best results were achieved with k equal to 2. With this set up, the augmented 
data changed 2.03%± 0.84% , 2.04%± 0.84% , and 2.03%± 0.78% from the original 
training data for BP, CC and MF ontologies, respectively. We investigate the impact of 
the usage of data augmentation in the Results section.

TEMPROT+
In this subsection, we present TEMPROT+, an ensemble of TEMPROT with BLASTp 
[10], a homology search tool.

BLASTp

Considering the improvements obtained by TALE+ and DeepGOPlus using DIA-
MOND, and by ATGO+ using BLASTp, we also implemented a version of our 
method combined with a homology search using BLASTp. To do so, we ran BLASTp 
to perform homology search considering sequence similarity of validation and test 
proteins against the sequences from the training set. As used in the previous meth-
ods, we set the E-value parameter equal to 0.001.

Based on the retrieved sequences, we applied the bitscore to make the predictions, 
as presented in Eq. 2, where S(p, f) indicates a score prediction for a protein p and a 
specific function f, s is a protein of the set E of retrieved proteins of the training set, Ts 
is the functions played by s, and I() is a function that returns 1 if the condition inside 
is true or 0 if it is false.

Ensemble of TEMPROT and BLASTp

To ensemble TEMPROT and BLASTp predictions, we investigated various linear 
combination approaches between their predictions, as shown in Additional file 1. The 
ensemble method applied in our model is expressed in Eq. 3, which achieved the best 
results compared to variations of this equation, where S(p,  f) indicates a score pre-
diction for a protein p and a specific function f, considering the prediction yT  from 
TEMPROT and yB from BLASTp.

In order to find the α values for each ontology, we ran a grid search considering the vali-
dation set. The best outcomes were obtained for α equal to 0.21, 0.60, and 0.30 for BP, 
CC, and MF, respectively.

(1)Subs(p) = L× k

(2)S(p, f ) = s∈E I(f ∈ Ts)× bitscore(p, s)

s∈E bitscore(p, s)

(3)S(p, f ) = α × yT + (1− α)× yB
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Comparison methods

In order to compare our method with state-of-the-art models, we selected three dif-
ferent types of approaches. We describe each one as follows.

The first approach is the baseline methods, as proposed by the CAFA challenge 
organizers [23]. There are two classifiers in this category, naive and based on sequence 
similarity using BLAST. Naive one is a classifier that predicts that each function of 
proteins in the test set has the same chance, that is, the same relative frequency, of the 
same function in the training set. For the second baseline classifier, we ran BLASTp 
for the prediction based on sequence similarity analysis using the highest local align-
ment sequence hit. In the Results section, we call the BLASTp implementation of 
CAFA as CAFA-BLASTp.

To evaluate TEMPROT considering the state-of-the-art approaches, we also 
assessed methods that employ amino acid sequence pattern recognition to make pre-
dictions. With that, we compared our outcomes with DeepGO, DeepGOPlusCNN, 
TALE+Transformers and ATGO.

DeepGO [5] is a method that applies protein sequence and protein network fea-
tures to convolutional neural networks. To make a fair comparison, we employed only 
the protein sequence part in the evaluation. DeepGOPlusCNN [6] is an evolution of 
DeepGO, capable of outperforming the previous method with architecture and pre-
processing steps. We also compared our results with Transformer-based methods, 
that is, TALE+Transformers [2], an approach based on the ensemble of different con-
figurations of the original Transformer architecture, and ATGO [7], a method that 
extracts embeddings from ESM-1b [31] architecture.

The last models we compared are based on the ensemble of sequence pat-
tern recognition and homology search predictions. We assessed DeepGOPlus [6], 
an ensemble of DeepGOPlusCNN with DIAMOND, TALE+ [2], an ensemble of 
TALE+Transformers and DIAMOND and ATGO+ [7], an ensemble of ATGO and 
BLASTp, with TEMPROT+. We also evaluated DIAMOND and BLASTp predictions 
based on Eq. 2.

For all approaches, we followed the hyperparameters reported in their original 
papers and the code available in their respective repositories and ran each one in our 
dataset in order to have a fair comparison with our results.

Evaluation

To evaluate and compare our model with the literature, we used four evaluation met-
rics. The first one is Fmax , the official metric of CAFA challenge [23]. Fmax measures 
the maximum harmonic mean between precision and recall considering the predic-
tions in all thresholds τ from 0 up to 1 with steps of 0.01. Equations 4, 5, and 6 rep-
resents precision at τ , recall at τ and Fmax , respectively, where f is a function of the 
ontology that is in evaluation, Pi(τ ) is the set of functions predicted in the threshold 
τ for a protein i, Ti is the ground truth of a protein i, m(τ ) is the number of proteins 
with at least one prediction equal to or greater than the threshold τ , ne is the number 
of proteins considering during the evaluation, and I() is a function that returns 1 if the 
condition inside is true or 0 if it is false.
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Based on the precision and recall values calculated in Fmax , we assessed the area under 
the precision–recall curve (AuPRC) of the methods. This metric is common in the litera-
ture to evaluate the protein function prediction task.

The main problem of AuPRC is that it penalizes when a method can only make predic-
tions with high recall and high precision compared to methods that can predict with a 
long range of precision and recall values. Therefore, we propose a new evaluation metric, 
the interpolated area under the precision–recall curve (IAuPRC). IAuPRC applies the 
interpolation for AuPRC, making evaluation more reliable and without penalization for 
methods that can predict functions with always good precision and recall values. The 
interpolation is represented by Eq. 7, where the precision value at a specific recall P(R) is 
equal to the maximum value of precisions with greater or equal recall levels P(R′) , where 
R′ � R.

Figure 3 shows an example of two methods considering AuPRC and IAuPRC. In AuPRC 
analysis, method 1 achieved 0.618 in this metric, while method 2 obtained 0.584. How-
ever, it is clear that the method 2’s curve is better than method 1’s curve, and method 
2 has been penalized by not making predictions with lower (worst) recall values. In 
the IAuPRC analysis, the interpolation of both curves resulted in 0.643 of IAuPRC for 
method 1 and 0.683 of IAuPRC for method 2, which indicates that method 2 is superior 
than method 1.

The last metric is Smin , which measures the semantic distance considering the infor-
mation content ( IC ) of each function that the prediction of false positive ( mi ) and false 

(4)pr(τ ) =
1

m(τ )

m(τ )
∑

i=1

∑

f I(f ∈ Pi(τ ) ∧ f ∈ Ti)
∑

f I(f ∈ Pi(τ ))

(5)rc(τ ) =
1

ne

n
∑

i=1

∑

f I(f ∈ Pi(τ ) ∧ f ∈ Ti)
∑

f I(f ∈ Ti)

(6)Fmax =max
τ

{

2× pr(τ )× rc(τ )

pr(τ )+ rc(τ )

}

(7)P(R) = max P(R′)

(a) AuPRC (b) IAuPRC
Fig. 3  Differences for AuPRC and IAuPRC metrics
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negative ( ru ) in a specific τ , where Pb(f|Pr(f)) is the probability of a function f given set of 
parents Pr(f). Equations 8, 9, 10, and 11 describe IC , ru , mi , and Smin , respectively.

It is important to note that these metrics comply with the ontology format, that is, if a 
given term is predicted by a classifier in a specific threshold τ , all the ancestors are also 
predicted in this threshold.

Results
In this section, we present and discuss the results of TEMPROT and TEMPROT+ com-
pared to the literature.

Evaluation on test set

We evaluated TEMPROT and TEMPROT+ and compared the results with the state-of-
the-art methods, considering the test set of our dataset. Table 2 presents the outcomes 
of each model.

TEMPROT achieved the best Fmax and Smin compared to sequence pattern recogni-
tion approaches (DeepGO, DeepGOPlusCNN, TALE+Transformers, and ATGO) on 
CC and MF ontologies, outperforming ATGO by 0.005 on CC and 0.027 on MF of Fmax . 
Considering IAuPRC, TEMPROT achieved competitive results, with the best outcomes 
on MF ontology.

In the second analysis, with methods based on the ensemble of predictions of 
sequence pattern recognition and homology search, TEMPROT+ achieved the best 
results on Fmax on CC and MF, with improvements of 0.002 and 0.010 on CC and MF, 
respectively, compared to ATGO+, the second best outcomes. Considering Smin , TEM-
PROT+ obtained the best CC outcomes and the second best on BP and MF ontologies.

Domain generalization

To analyze the predictions of each model on the test set on different domains, we 
assessed each approach on Eukaryota, Bacteria, and Archaea with Fmax evaluation met-
ric for each ontology.

Figure 4 illustrates the Fmax value of each method on each domain. The outcomes show 
that TEMPROT had the best results on MF ontology, as well as competitive scores on 
BP and CC ontologies, with the best Fmax on Bacteria domain on BP, and the best Fmax 
on Eukaryota and Bacteria domains on CC. TEMPROT+ achieved the best results on 

(8)IC(f ) =− log(Pb(f |Pr(f ))

(9)ru(τ ) =
1

ne

ne
∑

i=1

∑

f ∈Ti−Pi(τ )

IC(f )

(10)mi(τ ) =
1

ne

ne
∑

i=1

∑

f ∈Pi(τ )−Ti

IC(f )

(11)Smin =min
τ

√

ru(τ )2 +mi(τ )2
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Eukaryota domain on MF ontology, as well as the best results on Bacteria and competi-
tive results on Eukaryota and Archaea domains on BP and CC ontologies.

Frequency analysis

An important aspect is that models must correctly predict rare terms. To analyze the 
ability of the approaches to annotate terms with different frequency appearances, we 
evaluated each model by considering IAuPRC on all 100 percentage values on the pro-
teins of the test set, as shown in Fig. 5. In the evaluation, if we were analyzing a specific 
percentage, all terms that have up to that frequency are analyzed, for instance, for a 10% 
analysis, ontologies terms that have up to 10% of frequency are considered.

As a result, TEMPROT achieved the best overall results on MF ontology, with the 
highest values in all frequencies, and competitive results with ATGO on CC ontology. In 
the case of the BP ontology, TEMPROT had the second best performance at the begin-
ning of the analysis, that is, in rare functions, with competitive results for the other 
values.

(a) BP - Sequence (b) CC - Sequence

(c) MF - Sequence (d) BP - Sequence and Homology

(e) CC - Sequence and Homology (f) MF - Sequence and Homology
Fig. 4  Comparions of TEMPROT and TEMPROT+ with the state-of-the-art on domain evaluation
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Considering TEMPROT+, across all ontologies, our method had the best perfor-
mance in rare terms, with competitive outcomes for other values. Concerning MF ontol-
ogy, TEMPROT+ obtained the best overall outcomes along with ATGO+.

Ablation study

To evaluate the impact of doing the fine-tuning of ProtBERT-BFD, applying data aug-
mentation to the sequences, and using the meta-classifier, we assessed different configu-
rations, as shown in Table 3, on the test set.

The ablation study indicates that the use of the meta-classifier (second row of Table 3) 
in our method achieved better results compared to the prediction based on the back-
bone only (part (a) of Fig. 1, indicated in the last row of Table 3). It is important to note 
that we needed to aggregate the predictions of slices from the same protein to have a 

(a) BP - Sequence (b) CC - Sequence

(c) MF - Sequence (d) BP - Sequence and Homology

(e) CC - Sequence and Homology (f) MF - Sequence and Homology
Fig. 5  Comparions of TEMPROT and TEMPROT+ with the state-of-the-art on frequency analysis
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unique prediction per protein at without meta-classifier approach. To do so, we applied 
the mean operation on the predictions considering all the slices of the same protein.

Concerning data augmentation and fine-tuning, the version without data augmenta-
tion and without fine-tuning had the worst performance based on Fmax (TEMPROT 
without augmentation and without fine-tuning). The application of fine-tuning tech-
nique (TEMPROT without augmentation) or data augmentation (TEMPROT without 
fine-tuning) improved the results compared to the former configuration in general. 
TEMPROT, a version using both fine-tuning and data augmentation, achieved the 
best result considering the sequence pattern information, which represents that both 
techniques are important for the outcomes. In the end, the best Fmax was achieved by 
TEMPROT+, showing that the ensemble of machine learning with homology search 
predictions can indeed improve the results.

Prediction time

We assessed TEMPROT and TEMPROT+ compared to the literature considering the 
average time to predict each protein of the test set of each ontology. Table 4 presents 
the results, showing that convolutional-based methods, such as DeepGOPlusCNN 
and DeepGO, are more efficient than Transformer-based models, such as ATGO and 

Table 3  Ablation study of different configurations of our method on the three ontologies

Method Fmax

BP CC MF

TEMPROT+ 0.581 0.692 0.662

TEMPROT 0.499 0.689 0.643

TEMPROT w/o augmentation 0.493 0.687 0.639

TEMPROT w/o fine-tuning 0.493 0.681 0.618

TEMPROT w/o augmentation and w/o fine-
tuning

0.490 0.681 0.620

TEMPROT w/o meta-classifier 0.477 0.677 0.592

Table 4  Average prediction time in seconds for each protein of the test set on BP, CC and MF 
ontologies

Method BP CC MF

Naive 0.001 0.002 0.002

DIAMOND 0.005 0.008 0.007

DeepGOPlusCNN 0.013 0.022 0.025

DeepGO 0.019 0.025 0.026

DeepGOPlus 0.023 0.030 0.032

TALE+Transformers 0.035 0.047 0.062

TALE+ 0.040 0.055 0.069

ATGO 0.304 0.508 0.434

TEMPROT 0.617 0.643 0.627

BLASTp 0.666 0.946 0.595

CAFA-BLASTp 0.666 0.946 0.595

ATGO+ 0.971 1.455 1.029

TEMPROT+ 1.283 1.589 1.222
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TEMPROT. Concerning homology-based predictions by different tools, DIAMOND 
required less time to execute than BLASTp, which impacted the runtime of DeepGO-
Plus and TALE+ compared to TEMPROT+ and ATGO+.

Discussion
The outcomes of both classifiers presented in this work surpassed the methods in the 
literature considering sequence pattern recognition and the ensemble of sequence infor-
mation with homology search via sequence similarity. Compared to state-of-the-art 
methods, TEMPROT and TEMPROT+ can train using sequences of different lengths, 
which is not possible in the literature approaches evaluated in this paper. DeepGO 
and DeepGOPlus (also DeepGOPlusCNN) trained with sequences up to 1000 and 
2000, respectively. In the case of TALE+ (also TALE+Transformers) and ATGO (also 
ATGO+), sequences longer than 1000 (TALE+) and 1022 (ATGO+) are cut into a sub-
sequence equal to the method maximum input size.

Considering the evaluation, our methods also presented competitive results in domain 
generalization, with the best outcomes on MF ontology. We conclude that methods 
based on pre-trained on a large volume of protein sequences, that is, TEMPROT and 
ATGO, are able to classify protein functions better than other models, due to this ontol-
ogy is more dependent of protein sequences [32]. On BP and CC ontologies, both TEM-
PROT and TEMPROT+ achieved the best results on at least one domain.

In the frequency analysis, TEMPROT and TEMPROT+ obtained the best results on 
MF and both of them achieved the best outcomes on rare terms (lower frequencies) 
along with ATGO on CC, and competitive results on BP. With that, the experiments 
indicated that methods with pre-trained architectures, such as TEMPROT and ATGO, 
are able to predict terms with lower frequencies.

Regarding the BP ontology, ATGO and ATGO+ outperformed TEMPROT and TEM-
PROT+ in most evaluations. Since this ontology has more terms than CC and MF, we 
conclude that it could muddle the classification of TEMPROT compared to ATGO. Fur-
thermore, ATGO extracts embeddings from different layers of ESM-1b, which may help 
the generalization of this model. With that, the ensembles of sequence pattern recog-
nition and homology search, that is, ATGO+ and TEMPROT+, follow the pattern of 
ATGO and TEMPROT.

We also noticed that our method has shown improvements in generalization by mak-
ing fine-tuning and applying data augmentation techniques on the Transformers back-
bone. We demonstrated the importance of the usage of the meta-classifier during our 
investigation.

Conclusions
In this work, we presented and discussed a model based on Transformer embeddings 
capable of annotating protein based on its sequences. Our model can also be ensembled 
with homology search predictions, resulting in a classifier that reported better outcomes 
than the standard version.

In our experiments, we showed that TEMPROT and TEMPROT+ outperformed 
state-of-the-art approaches on MF and CC ontologies, considering Fmax , the main 
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metric for protein function prediction in the literature. Our method also presented 
improvements related to input size compared to state-of-the-art approaches.

For future improvements of TEMPROT and TEMPROT+, we can highlight the 
investigation of additional features, such as protein-protein interaction networks and 
structure information, which can help to improve the results of proteins that have this 
information available. We also plan to investigate different data augmentation tech-
niques, from adding insertions and deletions in the actual approach, to exploring pro-
tein generation models. Another possible direction is the analysis of long Transformers, 
which can cope with sequences longer than 512 amino acids without any preprocessing 
step and without large computation resources, and the utilization of different configura-
tion of windows, such as domain-based selection. We also plan experiments consider-
ing different approaches to ensemble TEMPROT with BLASTp predictions. As a final 
point, we intend to evaluate our method on different databases, such as other versions of 
CAFA dataset.
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